413 research outputs found

    Silicon Avalanche Pixel Sensor for High Precision Tracking

    Full text link
    The development of an innovative position sensitive pixelated sensor to detect and measure with high precision the coordinates of the ionizing particles is proposed. The silicon avalanche pixel sensors (APiX) is based on the vertical integration of avalanche pixels connected in pairs and operated in coincidence in fully digital mode and with the processing electronics embedded on the chip. The APiX sensor addresses the need to minimize the material budget and related multiple scattering effects in tracking systems requiring a high spatial resolution in the presence of a large occupancy. The expected operation of the new sensor features: low noise, low power consumption and suitable radiation tolerance. The APiX device provides on-chip digital information on the position of the coordinate of the impinging charged particle and can be seen as the building block of a modular system of pixelated arrays, implementing a sparsified readout. The technological challenges are the 3D integration of the device under CMOS processes and integration of processing electronics.Comment: 13th Topical Seminar on Innovative Particle and Radiation Detectors IPRD1

    A Wireless, Battery-Powered Probe Based on a Dual-Tier CMOS SPAD Array for Charged Particle Sensing

    Get PDF
    A compact probe for charged particle imaging, with potential applications in source activity mapping and radio-guided surgery was designed and tested. The development of this technology holds significant implications for medical imaging, offering healthcare professionals accurate and efficient tools for diagnoses and treatments. To fulfill the portability requirements of these applications, the probe was designed for battery operation and wireless communication with a PC. The core sensor is a dual-layer CMOS SPAD detector, fabricated using 150 nm technology, which uses overlapping cells to produce a coincidence signal and reduce the dark count rate (DCR). The sensor is managed and interfaced with a microcontroller, and custom firmware was developed to facilitate communication with the sensor. The performance of the probe was evaluated by characterizing the on-board SPAD detector in terms of the DCR, and the results were consistent with the characterization measurements taken on the same chip samples using a purposely developed benchtop setup

    Beam test calibration of the balloon-borne imaging calorimeter for the CREAM experiment

    Full text link
    CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission designed to collect direct data on the elemental composition and individual energy spectra of cosmic rays. Two instrument suites have been built to be flown alternately on a yearly base. The tungsten/Sci-Fi imaging calorimeter for the second flight, scheduled for December 2005, was calibrated with electron and proton beams at CERN. A calibration procedure based on the study of the longitudinal shower profile is described and preliminary results of the beam test are presented.Comment: 4 pages, 4 figures. To be published in the Proceedings of 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3-10, 200

    The MEG detector for μ+e+γ{\mu}+\to e+{\gamma} decay search

    Get PDF
    The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay \meg\ by using one of the most intense continuous μ+\mu^+ beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus.Comment: 59 pages, 90 figure

    The GINGER Project

    Get PDF
    GINGER (Gyroscopes IN General Relativity) is a project aiming at measuring the Lense-Thirring effect, at 1% level, with an experiment on earth. It is based on an array of ring-lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. The GINGER project is still under discussion; the experiment G-GranSasso is an R&D experiment financed by INFN Group II, it is studying the key points of GINGER and at the same time developing prototypes. In the following the signal coming out of a ring-laser and the present sensitivity are described.The prototypes GP2 and GINGERino and the preliminary results are reported. This project is inter-disciplinary since ring-lasers provide informations for the fast variation of the earth rotation rate, they are used for the rotational seismology and for top sensitivity angle metrology

    Теоретичне прогнозування критичних станів вертикальних колон надглибинного буріння

    Get PDF
    Поставлена задача об устойчивости и свободных колебаниях глубоких вращающихся бурильных колонн, которые преднапряжены продольной силой и крутящим моментом. С учетом статических и динамических эффектов силового взаимодействия указанных механических факторов построены разрешающие уравнения. Предложена методика их решения, основанная на применении метода продолжения по параметру и метода ортогонализации. Выполнены исследования устойчивости и колебаний бурильных колонн длиной до 10000 мThe problem about free vibrations of rotating drill columns prestressed by torque and longitudinal force is stated. The constitutive equations are formulated with allowance made for static and dynamic effects of force interaction betwen the mentioned factors. The techniques of the equation integration are proposed, wich are based on application of the transfer matrix method and the orthogonalization method. The investigations of stability and vibrations of the 10 km length drill strings are performed
    corecore